Abstract
Credibility theory is a statistical tool to calculate the premium for the next period based on past claims experience and the manual rate. Each contract is characterized by a risk parameter. A phase-type (or PH) random variable, which is defined as the time until absorption in a continuous-time Markov chain, is fully characterized by two sets of parameters from that Markov chain: the initial probability vector and transition intensity matrix. In this article, we identify an interpretable univariate risk parameter from amongst the many candidate parameters, by means of uniformization. The resulting density form is then expressed as an infinite mixture of Erlang distributions. These results are used to obtain a tractable likelihood function by a recursive formula. Then the best estimator for the next premium, i.e. the Bayesian premium, as well as its approximation by the Bühlmann credibility premium are calculated. Finally, actuarial calculations for the Bühlmann and Bayesian premiums are investigated in the context of a gamma prior, and illustrated by simulated data in a series of examples.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.