Abstract
We present a new method based on a Bayesian analysis to identify new members of nearby young kinematic groups. The analysis minimally takes into account the position, proper motion, magnitude and color of a star, but other observables can be readily added (e.g. radial velocity, distance). We use this method to find new young low-mass stars in the \beta Pictoris (\beta PMG) and AB Doradus (ABDMG) moving groups and in the TW Hydrae (TWA), Tucana-Horologium (THA), Columba, Carina and Argus associations. Starting from a sample of 758 mid-KM (K5V-M5V) stars showing youth indicators such as H\alpha\ and X-ray emission, our analysis yields 215 new highly probable low-mass members of the kinematic groups analyzed. One is in TWA, 37 in \beta PMG, 17 in THA, 20 in Columba, 6 in Carina, 50 in Argus, 33 in ABDMG, and the remaining 51 candidates are likely young but have an ambiguous membership to more than one association. The false alarm rate for new candidates is estimated to be 5% for \beta PMG and TWA, 10% for THA, Columba, Carina and Argus, and 14% for ABDMG. Our analysis confirms the membership of 58 stars proposed in the literature. Firm membership confirmation of our new candidates will require measurement of their radial velocity (predicted by our analysis), parallax and lithium 6708 {\AA} equivalent width. We have initiated these follow-up observations for a number of candidates and we have identified two stars (2MASSJ0111+1526, 2MASSJ0524-1601) as very strong candidate members of the \beta PMG and one strong candidate member (2MASSJ0533-5117) of the THA; these three stars have radial velocity measurements confirming their membership and lithium detections consistent with young age. Finally, we proposed that six stars should be considered as new bona fide members of \beta PMG and ABDMG, one of which being first identified in this work, the others being known candidates from the literature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.