Abstract

Transformation latent variable models are proposed in this study to analyze multivariate censored data. The proposed models generalize conventional linear transformation models to semiparametric transformation models that accommodate latent variables. The characteristics of the latent variables were assessed based on several correlated observed indicators through measurement equations. A Bayesian approach was developed with Bayesian P-splines technique and the Markov chain Monte Carlo algorithm to estimate the unknown parameters and transformation functions. Simulation shows that the performance of the proposed methodology is satisfactory. The proposed method was applied to analyze a cardiovascular disease data set.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.