Abstract
We present the censored regression model with the error term following the asymmetric exponential power distribution. We propose three Markov chain Monte Carlo (MCMC) algorithms: the first one uses the probability integral transformation; the second one uses a combination of the probability integral transformation and random walk draws; while the third one uses random walk draws. Using simulated data we compare the performance of the three MCMC algorithms. Then we compare the posterior means, or Bayes estimates, with maximum likelihood estimates. We estimate the stock option portion of executive compensation as an example of the empirical application.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.