Abstract
As a compromise between nonhomogeneous Poisson process and renewal process, the modulated power law process is more appropriate to model the failures of repairable systems. In this article, objective Bayesian methods are proposed to analyze the modulated power law process. Seven reference priors, one of which is also the Jeffreys prior, are derived. However, only four of them are taken into consideration because of their practicality. Propriety of the posterior densities considering the four reference priors is proved. Predictive distribution of the future failure time is obtained additionally. For the purpose of comparison, the simulation work and real data analysis are carried out based on both the objective Bayesian and maximum likelihood approaches, which show that the objective Bayesian estimation and prediction have much better statistical properties in a frequentist context, and outperforms the maximum likelihood method even with small or moderate sample sizes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.