Abstract

This article considers explicit and detailed theoretical and empirical Bayesian analysis of the well-known Poisson regression model for count data with unobserved individual effects based on the lognormal, rather than the popular negative binomial distribution. Although the negative binomial distribution leads to analytical expressions for the likelihood function, a Poisson-lognormal model is closer to the concept of regression with normally distributed innovations, and accounts for excess zeros as well. Such models have been considered widely in the literature (Winkelmann, 2008). The article also provides the necessary theoretical results regarding the posterior distribution of the model. Given that the likelihood function involves integrals with respect to the latent variables, numerical methods organized around Gibbs sampling with data augmentation are proposed for likelihood analysis of the model. The methods are applied to the patent-R&D relationship of 70 US pharmaceutical and biomedical companies, and it is found that it performs better than Poisson regression or negative binomial regression models.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.