Abstract

Summary Statistical modelling of functional magnetic resonance imaging data is challenging as the data are both spatially and temporally correlated. Spatially, measurements are taken at thousands of contiguous regions, called voxels, and temporally measurements are taken at hundreds of time points at each voxel. Recent advances in Bayesian hierarchical modelling have addressed the challenges of spatiotemporal structure in functional magnetic resonance imaging data with models incorporating both spatial and temporal priors for signal and noise. Whereas there has been extensive research on modelling the functional magnetic resonance imaging signal (i.e. the convolution of the experimental design with the functional choice for the haemodynamic response function) and its spatial variability, less attention has been paid to realistic modelling of the temporal dependence that typically exists within the functional magnetic resonance imaging noise, where a low order auto-regressive process is typically adopted. Furthermore, the auto-regressive order is held constant across voxels (e.g. AR(1) at each voxel). Motivated by an event-related functional magnetic resonance imaging experiment, we propose a novel hierarchical Bayesian model with automatic selection of the auto-regressive orders of the noise process that vary spatially over the brain. With simulation studies we show that our model is more statistically efficient and we apply it to our motivating example.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.