Abstract

 
 
 
 In this paper, we estimate a shape parameter of the Weibull-Frechet distribution by considering the Bayesian approach under two non-informative priors using three different loss functions. We derive the corresponding posterior distributions for the shape parameter of the Weibull-Frechet distribution assuming that the other three parameters are known. The Bayes estimators and associated posterior risks have also been derived using the three different loss functions. The performance of the Bayes estimators are evaluated and compared using a comprehensive simulation study and a real life application to find out the combination of a loss function and a prior having the minimum Bayes risk and hence producing the best results. In conclusion, this study reveals that in order to estimate the parameter in question, we should use quadratic loss function under either of the two non-informative priors used in this study.
 
 
 
 
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.