Abstract
The Lomax distribution is one of the well-known distributions that is used to fit heavy-tailed data. In this paper, we investigate the estimation of Shannon entropy of the Lomax distribution using noninformative priors. Some important priors including Jeffreys prior, reference priors and probability matching priors are presented. We demonstrate that the reference and matching priors for the Lomax entropy do not match the reference and probability matching priors of the Lomax parameters, regardless of which parameter of interest is considered. The propriety and the existence of the expectation of the posterior under each prior are validated, respectively. A simulation study is conducted to assess the frequentist performance of the proposed Bayesian estimates in terms of the mean squared error and coverage probability. Finally, the approach is applied to three real data sets for illustrative purposes.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.