Abstract

As diseases like cancer are increasingly understood on a molecular level, clinical trials are being designed to reveal or validate subpopulations in which an experimental therapy has enhanced benefit. Such biomarker-driven designs, particularly "adaptive enrichment" designs that initially enroll an unselected population and then allow for later restriction of accrual to "marker-positive" patients based on interim results, are increasingly popular. Many biomarkers of interest are naturally continuous, however, and most existing design approaches either require upfront dichotomization or force monotonicity through algorithmic searches for a single marker threshold, thereby excluding the possibility that the continuous biomarker has a nondisjoint and truly nonlinear or nonmonotone prognostic relationship with outcome or predictive relationship with treatment effect. To address this, we propose a novel trial design that leverages both the actual shapes of any continuous marker effects (both prognostic and predictive) and their corresponding posterior uncertainty in an adaptive decision-making framework. At interim analyses, this marker knowledge is updated and overall or marker-driven decisions are reached such as continuing enrollment to the next interim analysis or terminating early for efficacy or futility. Using simulations and patient-level data from a multi-center Children's Oncology Group trial in Acute Lymphoblastic Leukemia, we derive the operating characteristics of our design and compare its performance to a traditional approach that identifies and applies a dichotomizing markerthreshold.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.