Abstract

ABSTRACTThis article describes a full Bayesian treatment for simultaneous fixed-effect selection and parameter estimation in high-dimensional generalized linear mixed models. The approach consists of using a Bayesian adaptive Lasso penalty for signal-level adaptive shrinkage and a fast Variational Bayes scheme for estimating the posterior mode of the coefficients. The proposed approach offers several advantages over the existing methods, for example, the adaptive shrinkage parameters are automatically incorporated, no Laplace approximation step is required to integrate out the random effects. The performance of our approach is illustrated on several simulated and real data examples. The algorithm is implemented in the R package glmmvb and is made available online.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.