Abstract
The Cluster expansion (CE) is a powerful method for representing the energetics of alloys from a fit to first principles energies. However, many common fitting methods are computationally demanding and do not provide the guarantee that the system’s ground states are preserved. This paper demonstrates the use of an efficient implementation of a Bayesian algorithm for cluster expansion construction that ensures all the input structural energies are fitted perfectly while reducing computational cost. The method incorporates an active learning scheme that searches for new optimal structures to include in the fit. As performance tests, we calculate the phase diagram of the Fe–Ir system and study the short range order in an equimolar MoNbTaVW system. The new method has been integrated into the Alloy Theoretic Automated Toolkit (ATAT).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.