Abstract
Visible Light Positioning (VLP) is a promising indoor localization technology for providing highly accurate positioning. In this work, a VLP implementation is employed to estimate the position of a vehicle in a room using the Received Signal Strength (RSS) and fixed LED-based light transmitters. Classical VLP approaches use lateration or angulation based on a wireless propagation model to obtain location estimations. However, previous work has shown that machine learning models such as Gaussian processes (GP) achieve better performance and are more robust in general, particularly in presence of non-ideal environmental conditions. As a downside, Machine Learning (ML) models require a large collection of RSS samples, which can be time-consuming to acquire. In this work, a sampling scheme based on active learning (AL) is proposed to automate the vehicle motion and to accelerate the data collection. The scheme is tested on experimental data from a RSS-based VLP setup and compared with different settings to a simple random sampling.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.