Abstract

This article is devoted to analysis and optimization problems of stochastic systems based on wavelet canonical expansions. Basic new results: (i) for general Bayes criteria, a method of synthesized methodological support and a software tool for nonstationary normal (Gaussian) linear observable stochastic systems by Haar wavelet canonical expansions are presented; (ii) a method of synthesis of a linear optimal observable system for criterion of the maximal probability that a signal will not exceed a particular value in absolute magnitude is given. Applications: wavelet model building of essentially nonstationary stochastic processes and parameters calibration.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.