Abstract

Abstract On the basis of statistical mechanics of the Q-Ising model, we formulate the Bayesian inference to the problem of inverse halftoning, which is the inverse process of representing gray-scales in images by means of black and white dots. Using Monte Carlo simulations, we investigate statistical properties of the inverse process, especially, we reveal the condition of the Bayes-optimal solution for which the mean-square error takes its minimum. The numerical result is qualitatively confirmed by analysis of the infinite-range model. As demonstrations of our approach, we apply the method to retrieve a grayscale image, such as standard image Lena, from the halftoned version. We find that the Bayes-optimal solution gives a fine restored grayscale image which is very close to the original. In addition, based on statistical mechanics of the Q-Ising model, we are sucessful in constructing a practically useful method of inverse halftoning using the Bethe approximation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.