Abstract
In this study, we focus on the detector design for a massive multiple-input multiple-output amplify-and-forward relaying system with low-precision analog-to-digital converters (ADCs) and digital-to-analog converters (DACs). A general relaying model with direct and relay links is considered. Several studies have been performed on the basis of simple but performance-limited linear transceivers. The optimal detector for the aforementioned setting remains unknown. To bridge this gap, we develop a minimum mean squared error detector based on the framework of variational Bayes inference. The proposed detector works similarly to the iterative turbo update, and the extrinsic information of the direct and relay links are updated through maximum ratio combining. Furthermore, our algorithm uses a partially parallel update schedule that improves the convergence compared with an intuitive method that is based on a fully parallel schedule. We then present the state evolution (SE) as an analytical framework to investigate the mean squared error and symbol error rate of the detector. By specifying the dynamics of the SE, we reveal that low-precision ADCs/DACs, that is, those using 2-4-bit quantization, realize a good tradeoff between performance and cost. Moreover, low-precision ADCs/DACs provide numerous insights into the relaying system and its design, such as the quantization step size.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.