Abstract

The solution of linear inverse problems when the unknown parameters outnumber data requires addressing the problem of a nontrivial null space. After restating the problem within the Bayesian framework, a priori information about the unknown can be utilized for determining the null space contribution to the solution. More specifically, if the solution of the associated linear system is computed by the conjugate gradient for least squares (CGLS) method, the additional information can be encoded in the form of a right preconditioner. In this paper we study how the right preconditioner changes the Krylov subspaces where the CGLS iterates live, and we draw a tighter connection between Bayesian inference and Krylov subspace methods. The advantages of a Bayes-meets-Krylov approach to the solution of underdetermined linear inverse problems is illustrated with computed examples.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.