Abstract

In practical situations, most experimental designs often yield unbalanced data which have different numbers of observations per unit because of cost constraints, missing data, etc. In this paper, we consider the Bayesian approach to hypothesis testing or model selection under the one-way unbalanced fixed-effects analysis-of-variance (ANOVA) model. We adopt Zellner's g-prior with the beta-prime distribution for g, which results in an explicit closed-form expression of the Bayes factor without integral representation. Furthermore, we investigate the model selection consistency of the Bayes factor under three different asymptotic scenarios: either the number of units goes to infinity, the number of observations per unit goes to infinity, or both go to infinity. The results presented extend some existing ones of the Bayes factor for the balanced ANOVA models in the literature.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.