Abstract

The problem of statistical pattern recognition with noisy or imprecise feature measurements is considered. An exact analytical expression is found for the probability of misclassification under this condition, for multiclass multivariate systems. The probability of error exceeds that of the ideal case for the special case of two classes, the a priori conditional probability density functions are assumed to be normal, along with the two cases of feature measurement error, namely normal and uniform probability density functions. Monotonicity of the misclassification probability with measurement error variance is shown. Numerical results are presented for both cases over a workable range of parameters. The study is useful in practical pattern recognition problems.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.