Abstract
This study investigated the hemodynamic effect of Bay 60-7550, a phosphodiesterase type 2 (PDE2) inhibitor, in healthy rat hearts both in vivo and ex vivo and its underlying mechanisms. In vivo rat left ventricular pressure-volume loop, Langendorff isolated rat heart, Ca2+ transient of left ventricular myocyte and Western blot experiments were used in this study. The results demonstrated that Bay 60-7550 (1.5 mg/kg, i. p.) increased the in vivo rat heart contractility by enhancing stroke work, cardiac output, stroke volume, end-diastolic volume, heart rate, and ejection fraction. The simultaneous aortic pressure recording indicated that the systolic blood pressure was increased and diastolic blood pressure was decreased by Bay 60-7550. Also, the arterial elastance which is proportional to the peripheral vessel resistance was significantly decreased. Bay 60-7550 (0.001, 0.01, 0.1, 1 μmol/l) also enhanced the left ventricular development pressure in non-paced and paced modes with a decrease of heart rate in non-paced model. Bay 60-7550 (1 μmol/l) increased SERCA2a activity and SR Ca2+ content and reduced SR Ca2+ leak rate. Furthermore, Bay 60-7550 (0.1 μmol/l) increased the phosphorylation of phospholamban at 16-serine without significantly changing the phosphorylation levels of phospholamban at 17-threonine and RyR2. Bay 60-7550 increased the rat heart contractility and reduced peripheral arterial resistance may be mediated by increasing the phosphorylation of phospholamban and dilating peripheral vessels. PDE2 inhibitors which result in a positive inotropic effect and a decrease in peripheral resistance might serve as a target for developing agents for the treatment of heart failure in clinical settings.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: European Journal of Pharmacology
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.