Abstract

For a multivariate stationary process, we develop explicit representations for the finite predictor coefficient matrices, the finite prediction error covariance matrices and the partial autocorrelation function (PACF) in terms of the Fourier coefficients of its phase function in the spectral domain. The derivation is based on a novel alternating projection technique and the use of the forward and backward innovations corresponding to predictions based on the infinite past and future, respectively. We show that such representations are ideal for studying the rates of convergence of the finite predictor coefficients, prediction error covariances, and the PACF as well as for proving a multivariate version of Baxter’s inequality for a multivariate FARIMA process with a common fractional differencing order for all components of the process.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.