7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
7-days of FREE Audio papers, translation & more with Prime
7-days of FREE Prime access
https://doi.org/10.1007/978-3-319-40533-9_3
Copy DOIPublication Date: Jan 1, 2017 |
Citations: 2 |
People with severe mobility impairment such as quadriplegia require help from human assistants to manage activities of daily living. Various assistive robotic devices have been proposed and some are commercially available, but they mostly have limited functionalities. We propose a cost-effective mobile robotic manipulator , BOW, or Baxter -on-Wheels, suitable for operations by mobility impaired but cognitively sound individuals. The BOW combines a human-friendly industrial robot (Baxter by Rethink Robotics) with a commercial electric wheelchair for an integrated and versatile, yet low cost, system. The human user can typically only command a small number of degrees of freedom due to the limitation of motion range or strength. To determine the complete robot motion, we propose a shared-control strategy blending the human command with autonomous redundancy resolution . The resolved velocity algorithm solves an on-line optimization matching the robot motion with the human commanded motion. Additional considerations such as collision prevention, singularity avoidance, satisfaction of joint limits , and exclusion of nonintuitive base motion, are incorporated as part of the optimization objective function or constraints. This constrained optimization problem is strictly convex and may be efficiently solved as a quadratic program. This approach allows multiple modes of operations, selectable by the user, including: end-effector position control, end-effector orientation control, combined position/orientation control, force control , and dual-arm control. We present the experimental results of two illustrative applications on the BOW: end-effector position control for a pick-and-place task and a board cleaning task involving both motion and force control. In both cases, the user only provides a 3-degree-of-freedom command, but can still effectively manipulate the motion and force of the robot end-effector, while the autonomous controller provides intuitive and safe internal motion.
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.