Abstract

Baxter permutations, so named by Boyce, were introduced by Baxter in his study of the fixed points of continuous functions which commute under composition. Recently Chung, Graham, Hoggatt, and Kleiman obtained a sum formula for the number of Baxter permutations of 2 n − 1 objects, but admit to having no interpretation of the individual terms of this sum. We show that in fact the k th term of this sum counts the number of (reduced) Baxter permutations that have exactly k − 1 rises.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.