Abstract
Abstract We present a simple bijection between Baxter permutations of size n and plane bipolar orientations with n edges. This bijection translates several classical parameters of permutations into natural parameters of orientations, and has remarkable symmetry properties. By specialising it to Baxter permutations avoiding the pattern 3142, we obtain a bijection with non-separable planar maps, which had been described only in an implicit recursive manner so far (up to simple symmetries). A further specialization yields a bijection between permutations avoiding 3142 and 2413 and series-parallel maps.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.