Abstract
In this paper we generalize the well-known construction of shuffle product algebras by using mixable shuffles, and prove that any free Baxter algebra is isomorphic to a mixable shuffle product algebra. This gives an explicit construction of the free Baxter algebra, extending the work of Rota and Cartier.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.