Abstract

BackgroundAdaptation after massive smallbowel resection (SBR) is associated with increased cell turnover, increased rates of enterocyte proliferation, and apoptosis. Epidermal growth factor receptor (EGFR) inhibition attenuates adaptation and increases apoptosis. Intestinal levels of bax appear to correlate with EGFR signaling. This study tested the hypothesis that bax is required for the exaggerated postresection apoptosis induced by perturbed EGFR signaling. MethodsWaved-2 mice with impaired EGFR signaling were crossbred with bax-null mice. Offspring were subjected to either 50% proximal SBR or sham operation (bowel transection and reanastomosis). After 7 days, parameters of adaptation (villus height, wet weight), proliferation (% Ki-67 immunostaining of crypt cells), and apoptosis (# apoptotic bodies per crypt) were recorded in the remnant ileum. ResultsEnterocyte apoptosis was increased in waved-2 mice and prevented in bax-null mice after SBR. The accelerated apoptosis in the waved-2 mice was rescued in the context of deficient bax expression. Other parameters of adaptation were restored in the bax-null/waved-2 mice. ConclusionBax is required for the induction of postresection enterocyte apoptosis. Defective EGFR signaling augments resection-induced enterocyte apoptosis via a mechanism that also requires bax expression. These data implicate a link between EGFR signaling and bax in the genesis of postresection apoptosis and adaptation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.