Abstract

Pro-apoptotic Bax and Bak have been implicated in the regulation of p53-dependent apoptosis. We assessed the ability of primary baby mouse kidney (BMK) epithelial cells from bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice to be transformed by E1A alone or in conjunction with dominant-negative p53 (p53DD). Although E1A alone transformed BMK cells from p53-deficient mice, E1A alone did not transform BMK cells from bax(-/-), bak(-/-), or bax(-/-) bak(-/-) mice. Thus, the loss of both Bax and Bak was not sufficient to relieve p53-dependent suppression of transformation in epithelial cells. To test the requirement for Bax and Bak in other death signaling pathways, stable E1A plus p53DD-transformed BMK cell lines were derived from the bax(-/-), bak(-/-), and bax(-/-) bak(-/-) mice and characterized for their response to tumor necrosis factor-alpha (TNF-alpha)-mediated apoptosis. The loss of both Bax and Bak severely impaired TNF-alpha-mediated apoptosis, but the presence of either Bax or Bak alone was sufficient for cell death. Cytochrome c was released from mitochondria, and caspase-9 was activated in Bax- or Bak-deficient cells in response to TNF-alpha but not in cells deficient in both. Thus, either Bax or Bak is required for death signaling through mitochondria in response to TNF-alpha, but both are dispensable for p53-dependent transformation inhibition.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.