Abstract

Simultaneous carbon mineralization during neutralization of bauxite residue, a caustic alkaline by-product of alumina refining, was tested using laboratory batch and a field pilot study in contact with atmospheric CO2. Since CO2 sequestration is limited by the Ca concentration in the bauxite residue, extra Ca sources were added in a semi-soluble mineral and salt form (flue gas desulfurization gypsum or CaCl2) to verify whether this Ca addition accelerated and enlarged the CO2 sequestration obtained as a consequence of neutralization. The results of 55 days of batch and longer-term field tests were in good agreement, and the neutralization rate was accelerated through the addition of both Ca sources. Without the addition of the extra Ca source, atmospheric CO2 contributed to neutralization of pore water alkalinity alone, while Ca addition induced further neutralization through mineral carbonation of atmospheric CO2 to CaCO3. This simple addition of environmentally benign Ca to bauxite residue may provide a feasible bauxite residue management practice that is cost-effective and easy to apply in the field.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.