Abstract

The overwhelming popularity of technology-based solutions and innovations to address day-to-day processes has significantly contributed to the emergence of smart cities. where millions of interconnected devices and sensors generate and share huge volumes of data. The easy and high availability of rich personal and public data generated in these digitalized and automated ecosystems renders smart cities vulnerable to intrinsic and extrinsic security breaches. Today, with fast-developing technologies, the classical username and password approaches are no longer adequate to secure valuable data and information from cyberattacks. Multi-factor authentication (MFA) can provide an effective solution to minimize the security challenges associated with legacy single-factor authentication systems (both online and offline). This paper identifies and discusses the role and need of MFA for securing the smart city ecosystem. The paper begins by describing the notion of smart cities and the associated security threats and privacy issues. The paper further provides a detailed description of how MFA can be used for securing various smart city entities and services. A new concept of blockchain-based multi-factor authentication named "BAuth-ZKP" for securing smart city transactions is presented in the paper. The concept focuses on developing smart contracts between the participating entities within the smart city and performing the transactions with zero knowledge proof (ZKP)-based authentication in a secure and privacy-preserved manner. Finally, the future prospects, developments, and scope of using MFA in smart city ecosystem are discussed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.