Abstract
Cyclic micro-bending tests on fcc single crystal Ni-base Alloy 718 cantilevers with different crystal orientations were performed to analyze the influence of activated slip systems on dislocation plasticity, latent hardening and the Bauschinger effect. The investigations indicate that plasticity in single crystal micro-cantilevers is significantly influenced by two phenomena - dislocation interaction and dislocation pile-up at the neutral plane. Both phenomena occur at the same time. Their ratio seems to be determined by the activated slip systems. Slip trace analysis indicates that the activation of only one slip system leads to a strong localization of plasticity to a limited number of parallel slip bands. This results in low dislocation interaction and consequently pronounced pile-ups at the neutral plane. In multi slip orientation, the second slip system leads to activation of significantly more dislocation sources, causing a much earlier and more homogeneous elastic-plastic transition zone. In stress-strain hysteresis loops during bending, pronounced dislocation interaction in multi slip orientation leads to a more pronounced latent hardening. The results suggest that on a microstructural length scale, plasticity behavior is strongly affected by activated slip systems, which determine local dislocation phenomena. Based on the results presented in this paper, a finite element analysis of latent hardening and the Bauschinger effect using a single crystal plasticity model with latent kinematic hardening is presented in Part II.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.