Abstract

Within the domain of deep learning applied to computer vision, there exists a significant emphasis on the competition between two prominent models, namely Inception ResNet and Xception, particularly in the field of marine fish object detection. The present study conducted a comparative analysis of two advanced neural network architectures in order to assess their efficacy in the identification and localization of marine fish species in underwater images. The two models underwent a rigorous evaluation, utilizing their capabilities in feature extraction. The findings indicate a complex performance landscape, wherein Inception ResNet exhibits remarkable accuracy in identifying marine fish objects, while Xception demonstrates superior computational efficiency. The present study elucidates the inherent trade-off between precision and computational expenditure, offering valuable perspectives on the pragmatic ramifications of choosing one model over another. Furthermore, this research underscores the significance of carefully choosing a suitable model that aligns with the particular requirements of object detection applications in the context of marine fish. This study endeavors to guide professionals and scholars in marine biology and computer vision, enabling them to make well-informed choices when utilizing deep learning techniques to detect maritime fish objects in underwater settings. The research specifically focuses on the comparison between Inception ResNet and Xception models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.