Abstract

The online estimation of battery state of health (SOH) is crucial to ensure the reliability of the energy supply in electric and hybrid vehicles. An approach for enhancing the generalization of SOH estimation using a parallel layer extreme learning machine (PL-ELM) algorithm is analyzed in this paper. The deterministic and stable PL-ELM model is designed to overcome the drift problem that is associated with some conventional machine learning algorithms; hence, extending the application of a single SOH estimation model over a large set of batteries of the same type. The PL-ELM model was trained with selected features that characterize the SOH. These features are acquired as the discrete variation of indicator variables including voltage, state of charge (SOC), and energy releasable by the battery. The model training was performed with an experimental battery dataset collected at room temperature under a constant current load condition at discharge phases. Model validation was performed with a dataset of other batteries of the same type that were aged under a constant load condition. An optimum performance with low error variance was obtained from the model result. The root mean square error (RMSE) of the validated model varies from 0.064% to 0.473%, and the mean absolute error (MAE) error from 0.034% to 0.355% for the battery sets tested. On the basis of performance, the model was compared with a deterministic extreme learning machine (ELM) and an incremental capacity analysis (ICA)-based scheme from the literature. The algorithm was tested on a Texas F28379D microcontroller unit (MCU) board with an average execution speed of 93 μs in real time, and 0.9305% CPU occupation. These results suggest that the model is suitable for online applications.

Highlights

  • IntroductionPublisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations

  • The results shown demonstrate the estimation of state of health (SOH) with deterministic

  • The result demonstrates that each battery used in the test had a distinct distribution, the estimation algorithm performance was optimum over the entire set

Read more

Summary

Introduction

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. The choice of lithium-ion battery in several applications, especially in the automotive industry, is mainly influenced by the high energy density per weight. The large number of charge/discharge cycles, and reduced memory effect influence this choice. Aging is a limiting factor in the operational life and the amount of energy that can be delivered by lithium-ion batteries, which has an impact on the reliability

Methods
Results
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.