Abstract

Lithium-ion batteries have become the primary electrical energy storage device in commercial and industrial applications due to their high energy/power density, high reliability, and long service life. It is essential to estimate the state of health (SOH) of batteries to ensure safety, optimize better energy efficiency and enhance the battery life-cycle management. This paper presents a comprehensive review of SOH estimation methods, including experimental approaches, model-based methods, and machine learning algorithms. A critical and in-depth analysis of the advantages and limitations of each method is presented. The various techniques are systematically classified and compared for the purpose of facilitating understanding and further research. Furthermore, the paper emphasizes the prospect of using a knowledge graph-based framework for battery data management, multi-model fusion, and cooperative edge-cloud platform for intelligent battery management systems (BMS).

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call