Abstract

Lithium-ion batteries have become the primary electrical energy storage device in commercial and industrial applications due to their high energy/power density, high reliability, and long service life. It is essential to estimate the state of health (SOH) of batteries to ensure safety, optimize better energy efficiency and enhance the battery life-cycle management. This paper presents a comprehensive review of SOH estimation methods, including experimental approaches, model-based methods, and machine learning algorithms. A critical and in-depth analysis of the advantages and limitations of each method is presented. The various techniques are systematically classified and compared for the purpose of facilitating understanding and further research. Furthermore, the paper emphasizes the prospect of using a knowledge graph-based framework for battery data management, multi-model fusion, and cooperative edge-cloud platform for intelligent battery management systems (BMS).

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.