Abstract

Large monthly demand charge of commercial and industrial entities is a major problem for their economical business. Utilizing a battery by behind-the-meter Energy Management Systems (EMS) has been seen as a solution to demand charge reduction. In state-of-the-art approaches, the EMS maintains sufficient energy for the unexpected large demands and uses the battery to meet them. However, large amount of energy stored in the battery may increase the average battery State-of-Charge (SoC) and cause degradation in battery capacity. Therefore, the current approaches of demand charge reduction significantly shortens the battery lifetime which is not economical. In this paper, we propose a novel battery optimal approach to reduce the monthly demand charges. In our approach, load profile of the previous month is used by daily optimizations to shave daily power demands while considering the battery lifetime model. Evaluated daily demand thresholds and load profile are statistically analyzed to cluster different types of day. Hence, it helps the EMS to find the typical daily load profile and appropriate monthly demand threshold for the entity. The performance of our approach has been analyzed and compared to the state-of-the-arts by experimenting on multiple real-life load profiles and battery configurations. The results show significant reduction of 16% in annual average battery SoC that increases the battery lifetime from 4.1 to 5.6 years while achieving up to 13.4% demand charge reduction.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.