Abstract

Li-ion battery internal short circuits are a major safety issue for electric vehicles, and can lead to serious consequences such as battery thermal runaway. An internal short can be caused by mechanical abuse, high temperature, overcharging, and lithium plating. The low impedance or hard internal short circuit is the most dangerous kind. The high internal current flow can lead to battery temperature increase, thermal runaway, and even explosion in a few seconds. Algorithms that can quickly detect such serious events with a high confidence level and which are robust to sensor noise are needed to ensure passenger safety. False positives are also undesirable as many thermal runaway mitigation techniques, such as activating pyrotechnic safety switches, would disable the vehicle. Conventional methods of battery internal short detection, including voltage and surface temperature based algorithms, work well for a single cell. However, these methods are difficult to apply in large scale battery packs with many parallel cells. In this study, we propose a new internal short detection method by using cell swelling information during the early stages of a battery heating caused by an internal short circuit. By measuring cell expansion force, higher confidence level detection can be achieved for an internal short circuit in an electric vehicle scale battery pack.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.