Abstract

The evolution of rechargeable battery characteristics have led to their use in almost every device in our everyday life. This importance has also increased the relevance of estimating the remaining battery charge (state of charge, SOC) and their health (state of health, SOH). One of the methods for the estimation of these parameters is based on the impedance spectroscopy obtained from the battery output impedance measured at multiple frequencies. This paper proposes an embedded measurement system capable of measuring the battery output impedance while in operation (either charging or supplying power to the intended device). The developed system generates a small amplitude stimulus that is added to the battery current. The system then measures the battery voltage and current to estimate the impedance at the stimulus frequencies. Three batteries were measured at different SOC levels, demonstrating the system principle of operation. Complementarily, a battery impedance equivalent circuit was used, together with genetic algorithms, to estimate the circuit parameters and assess their dependence on the battery SOC.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.