Abstract

In this paper, we study battery capacity design for battery electric vehicles (BEVs). The core of such design problems is to find a good tradeoff between minimizing the capacity to reduce financial costs of drivers and increasing the capacity to satisfy daily travel demands. The major difficulty of such design problems lies in modeling the diversity of daily travel demands. Based on massive trip records of taxi drivers in Beijing, we find that the daily vehicle miles traveled (DVMT) of a driver (e.g., a taxi driver) may change significantly in different days. This investigation triggers us to propose a mixture distribution model to describe the diversity in DVMT for various driver in different days, rather than the widely employed single distribution model. To demonstrate the merit of this new model, we consider value-at-risk and mean-variance battery capacity design problems for BEV, with respect to conventional single and new mixture distribution models of DVMT. Testing results indicate that the mixture distribution model better leads to better solutions to satisfy various drivers.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.