Abstract

This paper evaluates the effect of integrating battery-based energy storage transportation (BEST) by railway transportation network on power grid operation and control. A time-space network model is adopted to represent transportation constraints. The proposed model integrates the hourly security-constrained unit commitment with vehicle routing problem. The BEST solution provides the locational and hourly charging/discharging schedule of the battery storage system. The mobility of BEST will be of particular interest for enhancing the power system resilience in disaster areas where the transmission grid is congested or on outrage. Two cases are used to simulate the BEST including a six-bus power system linking with a three-station railway system, as well as the IEEE 118-bus systems linking with an eight-station railway system. The results show that under certain conditions, the mobility of battery storage system can economically relieve the transmission congestion and lower the operation costs.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call