Abstract

The advent of small-scale robots holds immense potential for revolutionizing various industries, particularly in the domains of surgery and operations within confined spaces that are currently inaccessible to conventional tools. However, their tethered nature and dependence on external power sources impede their progress. To surmount these challenges, the integration of batteries into these diminutive robots emerges as a promising solution. This article explores the integration of batteries in small-scale robots, focusing on “hard” and “soft” approaches. The challenges of integrating rigid batteries into microrobots are discussed. Various battery materials suitable for microfabrication are explored, along with creating three-dimensional structures to optimize performance within limited space. The “soft” integration emphasizes the need for flexible and deformable battery technologies that seamlessly integrate with soft robotic systems. Challenges related to flexibility, stretchability, and biocompatibility are addressed. The concept of distributed and mobile energy units, where smaller batteries assemble into a larger power bank, is proposed for scalability and adaptability. Extracting energy from the environment, inspired by fuel cells, reduces reliance on traditional batteries. This article offers valuable insights into battery integration for small-scale robots, propelling advancements in autonomous and versatile systems. By overcoming current limitations, integrated batteries will unlock the full potential of small-scale robots across various industries.Graphical abstract

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.