Abstract

Rare earth (RE) activated nanophosphors are the prime elements employed to manufacture light emitting diodes (LEDs) for the current solid state lighting (SSL) industry. The apparent lack of reddish orange emitting nanophosphors is proving to a constraint in the commercialization of the white light emitting diodes (WLEDs). Herein, the size of BaTiO3 (BTO): Sm3+ and K+ co-activated BTO: Sm3+ nanophosphor, with an average particle size of 80 nm, have been produced by a modified sol gel technique. The synthesized nanophosphors emit a brilliant reddish-orange light when excited at 406 nm. The relative photoluminescence (PL) studies of Sm3+ doped BTO and Sm3+ doped BTO with K+ nanophosphor show that adding K+ doubles the intensity of the emitted light and improves the thermal stability in a significant way. The results of the research indicated that using the aforementioned nanophosphor in the future may be advantageous for solid-state lighting systems, including warm LEDs with cyan light chips.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.