Abstract

Ferroelectric-germanium heterostructures have a strong potential for multifunctional devices. Germanium (Ge) is attractive due to its higher electron and hole mobilities while ferroelectric BaTiO3 is promising due to its high relative permittivity, which can make next-generation low-voltage and low-leakage metal-oxide semiconductor field-effect transistors. Here, we investigate the growth, structural, chemical, and band alignment properties of pulsed laser deposited BaTiO3 on epitaxial (100)Ge, (110)Ge, and (111)Ge layers. Cross-sectional transmission electron microscopy micrographs show the amorphous nature of the BaTiO3 layer and also show a sharp heterointerface between BaTiO3 and Ge. The appearance of strong Pendellösung oscillation fringes from high-resolution X-ray diffraction implies the presence of parallel and sharp heterointerfaces. The valence band offset relation of ΔEV(100) ≥ ΔEV(111) > ΔEV(110) and the conduction band offset relation of ΔE(C)(110) > ΔE(C)(111) ≥ ΔE(C)(100) on crystallographically oriented Ge offer significant advancement for designing new-generation ferroelectric-germanium-based multifunctional devices.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.