Abstract
This paper presents a spatially distributed support vector machine (SVM) system for estimating shallow water bathymetry from optical satellite images. Unlike the traditional global models that make predictions from a unified global model for the entire study area, our system uses locally trained SVMs and spatially weighted votes to make predictions. By using IKONOS-2 multi-spectral image and airborne bathymetric LiDAR water depth samples, we developed a spatially distributed SVM system for bathymetry estimates. The distributed model outperformed the global SVM model in predicting bathymetry from optical satellite images, and it worked well at the scenarios with a low number of training data samples. The experiments showed the localized model reduced the bathymetry estimation error by 60% from RMSE of 1.23 m to 0.48 m. Different from the traditional global model that underestimates water depth near shore and overestimates water depth offshore, the spatially distributed SVM system did not produce regional prediction bias and its prediction residual exhibited a random pattern. Our model worked well even if the sample density was much lower: The model trained with 10% of the samples was still able to obtain similar prediction accuracy as the global SVM model with the full training set.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.