Abstract

The evolution of body size is a problem of fundamental interest, and one that has an important bearing on community structure and conservation of biodiversity. The most obvious and pervasive characteristic of the deep-sea benthos is the small size of most species. The numerous attempts to document and explain geographic patterns of body size in the deep-sea benthos have focused on variation among species or whole faunal components, and have led to conflicting and contradictory results. It is important to recognize that studying size as an adaptation to the deep-sea environment should include analyses within species using measures of size that are standardized to common growth stages. An analysis within eight species of deep-sea benthic gastropods presented here reveals a clear trend for size to increase with depth in both larval and adult shells. An ANCOVA with multiple comparison tests showed that, in general, size–depth relationships for both adult and larval shells are more pronounced in the bathyal region than in the abyss. This result reinforces the notion that steepness of the bathymetric selective gradient decreases with depth, and that the bathyal region is an evolutionary hotspot that promotes diversification. Bathymetric size clines in gastropods support neither the predictions of optimality models nor earlier arguments based on tradeoffs among scaling factors. As in other environments, body size is inversely related to both abundance and species density. We suggest that the decrease in nutrient input with depth may select for larger size because of its metabolic or competitive advantages, and that larger size plays a role in limiting diversity. Adaptation is an important evolutionary driving force of biological diversity, and geographic patterns of body size could help unify ecological and historical theories of deep-sea biodiversity.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.