Abstract
Elevated atmospheric CO2 as a result of human activity is dissolving into the world's oceans, driving a drop in pH, and making them more acidic. Here we present the first data on the impacts of ocean acidification on a bathyal species of octopus Muusoctopus leioderma. A recent discovery of a shallow living population in the Salish Sea, Washington United States allowed collection via SCUBA and maintenance in the lab. We exposed individual Muusoctopus leioderma to elevated CO2 pressure (pCO2) for 1day and 7days, measuring their routine metabolic rate (RMR), critical partial pressure (P crit ), and oxygen supply capacity (α). At the time of this writing, we believe this is the first aerobic metabolic data recorded for a member of Muusoctopus. Our results showed that there was no change in either RMR, P crit or α at 1800µatm compared to the 1,000µatm of the habitat where this population was collected. The ability to maintain aerobic physiology at these relatively high levels is discussed and considered against phylogeny and life history.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.