Abstract

Finding efficient descriptions of how an environment affects a collection of discrete quantum systems would lead to new insights into many areas of modern physics. Markovian, or time-local, methods work well for individual systems, but for groups a question arises: Does system-bath or intersystem coupling dominate the dissipative dynamics? The answer has profound consequences for the long-time quantum correlations within the system. We consider two bosonic modes coupled to a bath. By comparing an exact solution against different Markovian master equations, we find that a smooth crossover of the equations of motion between dominant intersystem and system-bath coupling exists---but it requires a nonsecular master equation. We predict singular behavior of the dynamics and show that the ultimate failure of nonsecular equations of motion is essentially a failure of the Markov approximation. Our findings support the use of time-local theories throughout the crossover between system-bath-dominated and intersystem-coupling-dominated dynamics.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.