Abstract

Dissipative processes can drive different magnetic orders in quantum spin chains. Using a nonperturbative analytic mapping framework, we systematically show how to structure different magnetic orders in spin systems by controlling the locality of the attached baths. Our mapping approach reveals analytically the impact of spin-bath couplings, leading to the suppression of spin splittings, bath dressing and mixing of spin-spin interactions, and emergence of nonlocal ferromagnetic interactions between spins coupled to the same bath, which become long ranged for a global bath. Our general mapping method can be readily applied to a variety of spin models: we demonstrate (i)a bath-induced transition from antiferromagnetic (AFM) to ferromagnetic ordering in a Heisenberg spin chain, (ii)AFM to extended Neel phase ordering within a transverse-field Ising chain with pairwise couplings to baths, and (iii)a quantum phase transition in the fully connected Ising model. Our method is nonperturbative in the system-bath coupling. It holds for a variety of non-Markovian baths and it can be readily applied towards studying bath-engineered phases in frustrated or topological materials.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.