Abstract

A detailed investigation of the impact of molecular weight distribution of a photoactive polymer, poly[N‐9′‐heptadecanyl‐2,7‐carbazole‐alt‐5,5‐(4′,7′‐di‐2‐thienyl‐2′,1′,3′‐benzothiadiazole)] (PCDTBT), on photovoltaic device performance and carrier transport properties is reported. It is found that different batches of as‐received polymers have substantial differences in their molecular weight distribution. As revealed by gel permeation chromatography (GPC), two peaks can generally be observed. One of the peaks corresponds to a high molecular weight component and the other peak corresponds to a low molecular weight component. Photovoltaic devices fabricated with a higher proportion of low molecular weight component have power conversion efficiencies (PCEs) reduced from 5.7% to 2.5%. The corresponding charge carrier mobility at the short‐circuit region is also significantly reduced from 2.7 × 10−5 to 1.6 × 10−8 cm2 V−1 s−1. The carrier transport properties of the polymers at various temperatures are further analyzed by the Gaussian disorder model (GDM). All polymers have similar energetic disorders. However, they appear to have significant differences in carrier hopping distances. This result provides insight into the origin of the molecular weight effect on carrier transport in polymeric semiconducting materials.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.