Abstract

We report the design, fabrication, and experimental characterization of a novel fully microfabricated retarding potential analyzer (RPA) with performance better than the state-of-the-art. Our device comprises a set of bulk-micromachined electrode grids with apertures and inter-electrode spacing compatible with high-density plasma measurements; the thick electrodes also make our ion energy sensor more resistant to ablation in harsh environments than previously reported miniaturized RPAs. Our RPA includes a set of microfabricated deflection springs for robust and compliant alignment of the grid apertures across the grid stack, which greatly increases the signal strength and minimizes the ion interception, resulting in a tenfold improvement in peak signal amplitude compared to an RPA with unaligned grids and similar inter-electrode spacing.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.