Abstract
The efficacy of surrogate-assisted multi-objective evolutionary algorithms (SAMOEAs) in addressing expensive multi-objective optimization problems (MOPs) is contingent upon the modeling techniques and model-based infill sampling strategies. In addressing this pivotal aspect, this paper introduces a pioneering methodology known as batch subproblem coevolution with Gaussian process-driven linear models (BSCo-GPLM). Specifically, from a modeling perspective, BSCo-GPLM decomposes the MOP into single-objective subproblems. Following this decomposition, for each subproblem, a Gaussian process-driven linear model (GPLM) is collaboratively trained to prevent overfitting and improve prediction accuracy. Regarding infill sampling, collaborative optimization of all GPLMs yields optimal candidate solutions for each subproblem, organized into coherent clusters. Within each cluster, only the solution with the highest utility is evaluated. Relying on the heightened prediction accuracy of the GPLM model and an efficient batch sampling strategy, BSCo-GPLM exhibits clear superiority over state-of-the-art SAMOEAs in effectively addressing expensive MOPs. The source code of BSCo-GPLM is available at https://github.com/CIAM-Group/EvolutionaryAlgorithm_Codes/tree/main/BSCo-GPLM.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.