Abstract

Tetrakis-(4-sulfonatophenyl)porphyrin cobalt was identified as a highly-active reductive dechlorination catalyst for chlorinated ethylenes. Through batch reactor kinetic studies, degradation of chlorinated ethylenes proceeded in a step-wise fashion with the sequential replacement of Cl by H. For perchloroethylene (PCE) and trichloroethylene (TCE), the dechlorination products were quantified and the C 2 mass was accounted for. Degradation of the chlorinated ethylenes was found to be first-order in substrate. Dechlorination trials with increasing catalyst concentration showed a linearly increasing pseudo first-order rate constant which yielded rate laws for PCE and TCE degradation that are first-order in catalyst. The dechlorination activity of this catalyst was compared to that of another water-soluble cobalt porphyrin under the same reaction conditions and found to be comparable for PCE and TCE.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call